
astroalign Documentation
Release 1.0.3

Martin Beroiz

May 18, 2018

Contents

1 Guide: 3
1.1 Installation . 3
1.2 Tutorial . 3
1.3 Module Methods . 5
1.4 Working with masks . 6

2 Indices and tables 9

Python Module Index 11

i

ii

astroalign Documentation, Release 1.0.3

ASTROALIGN is a simple package that will try to register (align) two stellar astronomical images, especially when
there is no WCS information available.

It does so by finding similar 3-point asterisms (triangles) in both images and estimating the affine transformation
between them.

General registration routines try to match feature points, using corner detection routines to make the point corre-
spondence. These generally fail for stellar astronomical images, since stars have very little stable structure and so,
in general, indistinguishable from each other. Asterism matching is more robust, and closer to the human way of
matching stellar images.

Astroalign can match images of very different field of view, point-spread functions, seeing and atmospheric conditions.

Warning: It may not work, or work with special care, on images of extended objects with few point-like sources
or in very crowded fields.

Contents 1

astroalign Documentation, Release 1.0.3

2 Contents

CHAPTER 1

Guide:

1.1 Installation

The easiest way to install is using pip:

pip install astroalign

This will install the latest stable version on PIPy.

If you want to use the latest development version from github, unpack or clone the repo on your local machine, change
the directory to where setup.py is, and install using setuptools:

python setup.py install

or pip:

pip install -e .

1.2 Tutorial

1.2.1 A simple usage example

Suppose we have two images of about the same portion of the sky, and we would like to transform one of them to fit
on top of the other one. Suppose we do not have WCS information, but we are confident that we could do it by eye,
by matching some obvious asterisms on the two images.

In this particular use case, astroalign can be of great help to automatize the process.

After we load our images into numpy arrays, we simple choose one to be the source image and the other to be the
target.

The usage for this simple most common case would be as follows:

3

https://github.com/toros-astro/astroalign

astroalign Documentation, Release 1.0.3

>>> import astroalign as aa
>>> registered_image = aa.register(source, target)

registered_image is now a transformed (numpy array) image of source that will match pixel to pixel to
target.

If source is a masked array, registered_image will have a mask transformed like source with pixels outside
the boundary masked with True (read more in Working with masks).

1.2.2 Finding the transformation

In some cases it may be necessary to inspect first the transformation parameters before applying it, or we may be
interested only in a star to star correspondence between the images. For those cases, we can use find_transform.

find_transform will return a scikit-image SimilarityTransform object that encapsulates the matrix transforma-
tion, and the transformation parameters. It will also return a tuple with two lists of star positions of source and its
corresponding ordered star postions on the target image.:

>>> transf, (source_list, target_list) = aa.find_transform(source, target)

source and target here can be either numpy arrays of the image pixels, or any iterable (x, y) pair, corresponding to a
star position.

The transformation parameters can be found in transf.rotation, transf.traslation, transf.scale
and the transformation matrix in transf.params.

If the transformation is satisfactory we can apply it to the image with apply_transform. Continuing our example:

>>> if transf.rotation > MIN_ROT:
... registered_image = aa.apply_transform(transf, source, target)

1.2.3 If you know the star-to-star correspondence

As a convenience, estimate_transform from scikit-image is imported to astroalign.

If for any reason you know which star corresponds to what other, you can call estimate_transform.

Let us suppose we know the correspondence:

• (127.03, 85.98) in source –> (175.13, 111.36) in target

• (23.11, 31.87) in source –> (0.58, 119.04) in target

• (98.84, 142.99) in source –> (181.55, 206.49) in target

• (150.93, 85.02) in source –> (205.60, 91.89) in target

• (137.99, 12.88) in source –> (134.61, 7.94) in target

Then we can estimate the transform:

>>> src = np.array([(127.03, 85.98), (23.11, 31.87), (98.84, 142.99),
... (150.93, 85.02), (137.99, 12.88)])
>>> dst = np.array([(175.13, 111.36), (0.58, 119.04), (181.55, 206.49),
... (205.60, 91.89), (134.61, 7.94)])
>>> tform = aa.estimate_transform('affine', src, dst)

And apply it to an image with apply_transform or to a set of points with matrix_transform.

4 Chapter 1. Guide:

http://scikit-image.org
http://scikit-image.org/docs/dev/api/skimage.transform.html#skimage.transform.SimilarityTransform
http://scikit-image.org/docs/dev/api/skimage.transform.html#skimage.transform.estimate_transform

astroalign Documentation, Release 1.0.3

1.2.4 Applying a transformation to a set of points

As a convenience, matrix_transform from scikit-image is imported to astroalign.

To apply a known transform to a set of points, we use matrix_transform. Following the example in the previous
section:

>>> dst_calc = aa.matrix_transform(src, tform.params)

dst_calc should be a 5 by 2 array similar to the dst array.

See Module Methods for more information.

1.3 Module Methods

ASTROALIGN is a simple package that will try to align two stellar astronomical images, especially when there is no
WCS information available.

It does so by finding similar 3-point asterisms (triangles) in both images and deducing the affine transformation be-
tween them.

General registration routines try to match feature points, using corner detection routines to make the point correspon-
dence. These generally fail for stellar astronomical images, since stars have very little stable structure and so, in
general, indistinguishable from each other.

Asterism matching is more robust, and closer to the human way of matching stellar images.

Astroalign can match images of very different field of view, point-spread functions, seeing and atmospheric conditions.

3. Martin Beroiz

astroalign.MAX_CONTROL_POINTS = 50
The maximum control points (stars) to use to build the invariants.

Default: 50

astroalign.MIN_MATCHES_FRACTION = 0.8
The minimum fraction of triangle matches to accept a transformation.

If the minimum fraction yields more than 10 triangles, 10 is used instead.

Default: 0.8

astroalign.NUM_NEAREST_NEIGHBORS = 5
The number of nearest neighbors of a given star (including itself) to construct the triangle invariants.

Default: 5

astroalign.PIXEL_TOL = 2
The pixel distance tolerance to assume two invariant points are the same.

Default: 2

astroalign.align_image(ref_image, img2transf, n_ref_src=50, n_img_src=70, px_tol=2.0)
Deprecated: Alias for register for backwards compatibility.

astroalign.apply_transform(transform, source, target)
Applies the transformation transform to source.

The output image will have the same shape as target.

1.3. Module Methods 5

http://scikit-image.org/docs/dev/api/skimage.transform.html#skimage.transform.matrix_transform

astroalign Documentation, Release 1.0.3

Parameters

• transform – A scikit-image SimilarityTransform object.

• source (numpy array) – A 2D numpy array of the source image to be transformed.

• target (numpy array) – A 2D numpy array of the target image. Only used to set the
output image shape.

Returns A numpy 2D array of the transformed source. If source is a masked array the returned
image will also be a masked array with outside pixels set to True.

astroalign.find_affine_transform(test_srcs, ref_srcs, max_pix_tol=2.0,
min_matches_fraction=0.8, invariant_map=None)

Deprecated: Alias for find_transform for backwards compatibility.

astroalign.find_transform(source, target)
Estimate the transform between source and target.

Return a SimilarityTransform object T that maps pixel x, y indices from the source image s = (x, y) into the target
(destination) image t = (x, y). T contains parameters of the tranformation: T.rotation, T.translation,
T.scale, T.params.

Parameters

• source (array-like) – Either a numpy array of the source image to be transformed or
an interable of (x, y) coordinates of the target control points.

• target (array-like) – Either a numpy array of the target (destination) image or an
interable of (x, y) coordinates of the target control points.

Returns

The transformation object and a tuple of corresponding star positions in source and target.:

T, (source_pos_array, target_pos_array)

Raises

• TypeError – If input type of source or target is not supported.

• Exception – If it cannot find more than 3 stars on any input.

astroalign.register(source, target)
Transform source to coincide pixel to pixel with target.

Parameters

• source (numpy array) – A 2D numpy array of the source image to be transformed.

• target (numpy array) – A 2D numpy array of the target image. Only used to set the
output image shape.

Returns A numpy 2D array of the transformed source. If source is a masked array the returned
image will also be a masked array with outside pixels set to True.

1.4 Working with masks

Sometimes, CCD defects can confuse the alignment algorithm because of misplaced star centroids, or fake point-like
sources on the image. In those cases, you may want to mask those artifacts so they are not counted as control points.

The way to do so is to wrap your image in a numpy masked array:

6 Chapter 1. Guide:

http://docs.scipy.org/doc/numpy/reference/maskedarray.html

astroalign Documentation, Release 1.0.3

>>> myarray = np.ma.array(myarray, mask=badpixelmask)

and mask bad pixels with True, following the numpy masked array convention.

You can now call astroalign methods in the usual way:

>>> import astroalign as aa
>>> registered_image = aa.register(myarray, target)

The type of the returned registered_image wil be the same type as the input image, regardless of the type of
target.

That is, if the source image is a masked array, the output will also be a masked array, with the masked transformed in
the same way as the source image and filled with True for pixels outside the boundary.

1.4. Working with masks 7

astroalign Documentation, Release 1.0.3

8 Chapter 1. Guide:

CHAPTER 2

Indices and tables

• genindex

• search

9

astroalign Documentation, Release 1.0.3

10 Chapter 2. Indices and tables

Python Module Index

a
astroalign, 5

11

astroalign Documentation, Release 1.0.3

12 Python Module Index

Index

A
align_image() (in module astroalign), 5
apply_transform() (in module astroalign), 5
astroalign (module), 5

F
find_affine_transform() (in module astroalign), 6
find_transform() (in module astroalign), 6

M
MAX_CONTROL_POINTS (in module astroalign), 5
MIN_MATCHES_FRACTION (in module astroalign), 5

N
NUM_NEAREST_NEIGHBORS (in module astroalign),

5

P
PIXEL_TOL (in module astroalign), 5

R
register() (in module astroalign), 6

13

	Guide:
	Installation
	Tutorial
	Module Methods
	Working with masks

	Indices and tables
	Python Module Index

